Quasi-coherent sheaves (Har II5, Shaf VI 3.2)

Def: A sheaf of \mathfrak{S}_x -modules \mathcal{F} on a scheme X is quasi-cohevent if X has an open affine cover by $U_i = \operatorname{Spec} A_i$ s.t. for each i, there is an A_i -module M_i such that $\mathcal{F}|_{U_i} \cong \widetilde{M}_i$. \mathcal{F} is <u>cohevent</u> if there exists a cover so that each M_i is finitely generated.

Ex: let $i: Y \hookrightarrow X$ be a closed immersion. Then the kinnel of $\mathcal{O}_X \twoheadrightarrow i_* \mathcal{O}_Y$ is a sheaf of ideals J_Y , called the ideal sheaf of the closed subscheme Y.

For each open affine $U = \operatorname{Spec} A \subseteq X$, $V = i^{-1}(U) = \operatorname{Spec} B$ must be affine, and $J(U) = \ker(A \longrightarrow B)$, which is the ideal defining the subscheme $V \hookrightarrow U$. We'll see later that ideal sheaves are quasi-coherent.

~ as a functor

If A is a ring, we now see that $M \mapsto \widetilde{M}$ is a functor from A-modules to quasi-cohevent sheaves on Spec A. We'll see that this is an equivalence of categories.

First note That for 7 quasi-coherent on X= SpecA,

We can take a cover by subsets of the form V= spec B, s.t. $F|_{v} \cong \tilde{M}$, which can then be covered by open sets D(g).

The inclusion
$$D(g) \subseteq V$$
 corresponds to the ring map
 $B \rightarrow A_g$. Thus, $\mathcal{F}|_{D(g)} \cong \mathcal{M} \otimes_{B} A_g$, so we can replace
the open cover by a cover of distinguished open sets.
Since affine schemer are quasi-compact, we can choose
only finitely many. So
 $X = D(g_1) \cup \dots \cup D(g_n)$ s.t.
 $\mathcal{F}|_{D(g_i)} = \widetilde{M}_i$ for some A_{g_i} -module \widetilde{M}_i .

The following lemma applies familiar properties of localization.

Lemma: let
$$X = SpecA$$
, \mathcal{F} a cohevent sheaf on X and $f \in A$.
a.) If $s \in \Gamma(X, \mathcal{F})$ s.t. $S \mapsto O \in \mathcal{O}(D(\mathcal{F}))$, then for some $n > 0$, $f^n s = 0$.

b.) For any
$$t \in \mathcal{F}(D(\mathcal{F}))$$
, there is some $n > 0$ s.t. $f^{+}t$
extends to a global section of \mathcal{F} .

<u>Pf</u>: a.) let $s \in \Gamma(X, \tilde{f})$ with $s|_{D(f)} = 0$.

For each i, set $s_i = S|_{D(g_i)}$, where $D(g_i)$ form the finite cover described above.

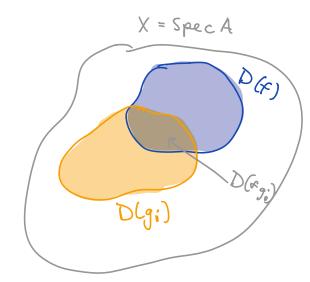
$$D(f) \cap D(g_i) = D(f_{g_i}),$$
so $\widehat{f}|_{D(f_{g_i})} = (M_i)_f$

=> the image of S_i is 0 in $(M_i)_f$.

=> $f^m S_i = 0$ for some h , so

We can choose $h >> 0$ so that

it works for every i .



Thus, $f^{n}s$ restricts to 0 on every open set in an open cover, so $f^{n}s = 0$.

b.) let
$$t \in \mathcal{F}(D(f))$$
. Again we can restrict it to
each $D(fg_i)$, and get $t \in (M_i)_{f}$.

Thus, $f^{n}t = t_{i} \in M_{i}$ for some n. Again, we can choose it to work for every h.

On the overlap $D(g_i) \cap D(g_j) = D(g_i g_j)$, we have two sections t_i, t_j , which agree on $D(g_i g_j f)$, where they both are $f^{h}t$.

Thus, applying a) to D(g;g;), we have a section ti-ti

which is zero on $D(g_{i}g_{i}f)$, so $f^{m}(t_{i}-t_{j})=0$ on $D(g_{i}g_{j})$ for some m. Choose $m \gg 0$ so that it works for all pairs $i_{i}j_{i}$.

Then $f^{m}t_{i}$ and $f^{m}t_{j}$ agree on the overlap, so there is some global section s of f whose restriction to D(f) is $f^{m}f^{n}t = f^{m+n}t$. \Box

Now we show that if a sheaf on any scheme is quasi-coherent, it'll restrict to some \tilde{M} on <u>every</u> open affine - not just for some open cover. In particular, on an affine scheme, any quasi-coherent sheaf is of the form \tilde{M} .

Prop: X a scheme. An O_X -module \mathcal{F} is quasicoherent rf and only if for every open affine U=SpecA, There's an A-module M s.t. $\mathcal{F}|_{U} \cong \widetilde{M}$.

Pf: (=) follows by definition, so let 7 be quasi-coherent and U=spec A open.

Just as above, we can find a basis for the topology on X consisting of open affines s.t. the restriction of F to each one is the sheaf associated to a module.

In particular, U is the union of such open sets,
so
$$\Im_{u}$$
 is quasi-coherent, so we can reduce to
the case X=SpecA is affine, and let M= $\Gamma(X, \mathcal{F})$.

We define a map $\alpha: \widetilde{M} \to \mathcal{F}$ by describing it on distinguished open sets:

If
$$f \in A$$
, let $t \in \widetilde{M}(D(f)) = M_{f}$. Thus $f^{*}t \in M = \Gamma(X, \widetilde{f})$,
so let $S \in \widetilde{F}(D(f))$ be the image of $f^{*}t$.

Define
$$\alpha(t) = \frac{1}{f^n} S$$
. (theck that this commutes $w/$
restriction so that it defines a morphism.)

F is quasi-coherent, so we can cover X by open
sets
$$D(g_i) w/ F|_{D(g_i)} \cong \widetilde{M}_i$$
 for some A_{g_i} -module
 M_i . So we get a map
 $\chi(D(g_i)): M_a \longrightarrow M_i$.

$$\alpha(\mathrm{Olg}_i)): \mathrm{M}_{g_i} \longrightarrow \mathrm{M}_i$$

If $a_{g_1} \rightarrow 0$, a eM, then the restriction of a e $\Gamma(X, f)$ to M; is O, so the lemma says gina = O for some n, so $a_{g_i}^m = 0$.

If
$$t \in M_i$$
, then the lemma says $g_i^{h}t \in M$ for some n , so $\frac{1}{g_i^{n}}(g_i^{n}t) \in M_{g_i}$ maps to b .

Thus,
$$\alpha$$
 induces an isomorphism $M_{g_i} \cong M_i$, so
 $\alpha \mid_{\mathcal{O}_{g_i}}$ is an isomorphism. Since the $\mathcal{O}_{(g_i)}$ cover
 X , α is an isomorphism. \square

Remark: If X is Noetherian, Then I is coherent (=> The same is true as above, only M is a finitely generated A-module.

Cor: let X=SpecA. The functor $M \mapsto \widetilde{M}$ gives an equivalence of categories between (f.g.) A-modules and quasi-coherent (coherent) \mathcal{O}_{x} -modules. It's inverse is $\mathcal{F} \mapsto \Gamma(x, \mathcal{F})$.

The global sections functor is left-exact for any sheaf. Given some additional hypotheses on affine schemes, it is exact:

Prop: If X is an affine scheme and

$$0 \to \widehat{\mathcal{F}}' \to \widehat{\mathcal{F}} \to \widehat{\mathcal{F}}'' \to 0$$

an exact sequence of \mathcal{O}_{x} -modules with \mathcal{F}' quasicohevent, the sequence

$$0 \to \lceil (X, \widetilde{\varphi}') \to \lceil (X, \widetilde{\varphi}) \to \lceil (X, \widetilde{\varphi}'') \to 0$$

is exact.

Pf: Similar techniques to those used above — see Hartshorne. We'll also be able to prove this easily once we have cohomology by showing H'(X, F')=0in this case.

Ex: let $k \hookrightarrow k[x]$ and $f: A'_{k} \to \text{Spec} k$ the corresponding Spec map. Then $\mathcal{O}_{A'}$ is coherent on A' but $f_{\star} \mathcal{O}_{A'} = k[x]$ on Spec k. But k[x] is not a finitely generated k-module. Let $i:Y \to X$ be a closed immersion. Recall that the <u>ideal sheaf of Y</u> is $J_Y := ker(\mathcal{O}_X \to i_*\mathcal{O}_Y)$

As we alluded to above, we have the following:

Prop: let Y be a closed subscheme of a scheme X. Then ly is quasi-cohevent on X. (X Noetherian => ly cohevent.)

If X is Noetherian, then for any open affine

$$U = Spec A \subseteq X$$
, A is Noetherian. Since dy is
quasi-coherent, $dy|_{u} = \tilde{T}$ for $I = \Gamma(U, dy|_{u}) \subseteq A$,
which is finitely generated. So dy is coherent. D

(Moreover, any quasi-coherent sheaf of ideals $d \subseteq O_X$ is the ideal sheaf of a unique closed subscheme of X.)

Cor: If X=SpecA, there's a I-1 correspondence between ideals I EA and closed subschemes Y of X.

Pf: If $F \subseteq O_x$ is a quasi-cohevent sheaf of ideals, we know $F = \widetilde{I}$, $T \subseteq A$ on ideal.

If $I \subseteq A$ an ideal, then $\tilde{I} \subseteq \tilde{A} = \mathcal{O}_X$ is q quasi-cohevent sheaf of ideals and is thus the ideal sheaf of the closed subscheme $\operatorname{Spec}(A/I) \to X.\Pi$